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Abstract: With the automotive industry moving towards automated driving, sensing is becoming 

an increasingly important part of enabling technology. The virtual sensors allow data fusion from 

various vehicle sensors and provide a prediction for measurement that is hard or too expensive to 

measure in another way or in the case of demand on continuous detection. In this paper, virtual 

sensing is discussed for the case of vehicle suspension control, where information about the relative 

velocity of the unsprung mass for each vehicle corner is required. The corresponding goal can be 

identified as a regression task with multi-input sequence input. The hypothesis is that the state-of-

art method of Bidirectional Long-Short Term Memory (BiLSMT) can solve it. In this paper, a virtual 

sensor has been proposed and developed by training a neural network model. The simulations have 

been performed using an experimentally validated full vehicle model in IPG Carmaker. Simulations 

provided the reference data which was used for Neural Network (NN) training. The extensive da-

taset covering 26 scenarios has been used to obtain training, validation and testing data. The Bayes-

ian Search was used to select the best neural network structure using root mean square error as a 

metric. The best network is made of 167 BiLSTM, 256 fully connected hidden units and 4 output 

units. Error histograms and spectral analysis of the predicted signal compared to the reference sig-

nal are presented. The results demonstrate the good applicability of neural network-based virtual 

sensors for the estimation of vehicle unsprung mass relative velocity.  

Keywords: virtual sensor; automotive control; active suspension; vehicle state estimation; neural 

networks; deep learning; long-short term memory; sequence regression 

 

1. Introduction 

Nowadays, the automotive industry focuses a lot on Automated Driving (AD) as a 

very promising solution to improve safety and comfort. The main functional components 

related to AD include perception, decision-making, and vehicle control. New generation 

vehicles will need more information to accomplish these three tasks and ensure safe driv-

ing without human involvement. The required data can be gained using standard and 

novel sensors, Vehicle to Everything (V2X) communication, and sensor fusion.  

 Sensors are crucial components needed for AD, as they provide the data required to 

perceive the environment and vehicle state estimation [1]. The first group include laser 

imaging detection and ranging (LIDAR), radio detection and ranging (Radar) [2], ultra-
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sonic distance sensor and camera. These sensors are placed outside the vehicle, and meas-

urement accuracy may be affected if covered by dirt, snow or ice. Cameras can be installed 

inside the cabin, which may prevent from disadvantages mentioned above. They can be 

applied for traffic objects detection and tracking, for vision-based localisation and naviga-

tion, to capture textures and colours. Usage of stereo and infrared cameras can expand 

their uses for geometric parameter estimation, capturing objects in dark lighting [3–5]. 

The second group of sensors used for vehicle state estimation involve a global navi-

gation satellite system (GNSS), inertial measurement unit (IMU), accelerometers, dis-

placement sensors, and wheel encoders. These sensors gather data about geolocation, ve-

hicle position, angular rates and body's accelerations. In addition, some novel sensors for 

wheel load reconstruction have been recently proposed [6, 7]. 

To pre-process and filter the data, sensor fusion of multiple sensors data provides 

more reliable and accurate input data. For example, combining GNSS and IMU provides 

vehicle information about global position and velocity. Camera and LIDAR or Radar fu-

sion provides 3D environment representation [1,2].  

In recent years, the field of virtual sensing has been intensively investigated. The Vir-

tual Sensors (VS) use existing signals from other on-board physical sensors combined with 

mathematical models or computing structures to approximate the system's state and cre-

ate virtual signals of derived physical quantities that cannot be measured directly [8], e.g. 

indexes of performance and efficiency. Also, VS can be used in the areas where the instal-

lation of a physical sensor is challenging. For example, pressure measurement in shock 

absorber or force measurement in wheel carrier/bearing [9]. 

VS technology requires additional development costs but reduces repetitive mainte-

nance costs [8]. At the same time, a decrease in the system's physical parts increases the 

overall reliability. Diagnostic applications could be incorporated by observing and pre-

dicting the system's state in advance or detecting machine degradation [10–12, 13]. In the 

case of synthetic data use for VS, preparing a mathematical model requires high compe-

tencies and skills. A mismatch between the model and the actual system leads to failure 

and high inaccuracy. When experimental data is used for VS training, computing struc-

tures on which sensors operate require accurate measurements and large data sets that 

cover as many real-life cases as possible, including the rare ones. The insignificant error 

can generate a significant drift in the estimated signals [8,14].  

VS are classified according to their development approach [8,10]: i) measurement 

characteristics-based, ii) modelling methods-based and iii) application purpose-based. 

Measurement characteristics-based VSs are used to represent the system's steady-state or 

transient measurements. Steady-state modelling is defined by the instant response to in-

put variables and moderate changes in measured values compared to the system's dy-

namics. Transient state type reacts slower due to complexity but allows a faster rate of 

change in input values. Modelling methods-based VS can be divided into data-driven, 

model-based or rule-based, considering modelling methods. Data-driven VSs are derived 

from historical data gathered by physical sensors. Model-based sensors operate using fun-

damental physical laws and mathematical relations between variables. Lastly, the rule-

based VS utilises both approaches and relies on physical parameters and empirical mod-

els. Following application purposes, VSs are either used as backup/redundancy or observ-

ing elements. There is the possibility to validate that physical sensors detect faults and 

calibrate them.  

Virtual sensing is intensively used for automotive applications. For example, for pas-

senger thermal comfort, tire pressure monitoring system, powertrain applications, sprung 

mass state estimation [15, 16] and others. With AD development, the role of VS will only 

increase as power-efficient embedded computing devices will be available. VS may be a 

key technology of advanced control algorithm enabling customisation of vehicle-human 

interaction.  

The vehicle-human interaction by AD needs to be carefully designed and evaluated, 

taking into account different aspects. As part of the task, this requires revising ride com-

fort and safety of the vehicles in urban and countryside conditions. The suspension design 
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has a crucial influence on the ride comfort and handling of the vehicle [17]. The tuning of 

the passive suspension has limited applicability to improve the vehicle's ride quality, as 

comfort and handling are conflicting objectives [18,19]. As a solution, semi-active or active 

suspension controlled by specialised control algorithms should be used.  

During the last decades, many strategies for suspension control have been devel-

oped. The majority of them use the velocity of sprung mass and velocity of unsprung 

masses as input parameters. In commercial systems, velocities are evaluated using inte-

grated data from IMU sensor placed on vehicle sprung mass and integrated/differentiated 

data from accelerometer and displacement sensor placed on vehicle unsprung mass. The 

combination of accelerometer and displacement sensor is often used for unsprung mass 

velocity estimation, as there is much noise in the measurement data, and it is not easy to 

obtain acceptable results using only one sensor. The development of virtual sensors may 

solve the need for physical sensors on unsprung mass. Only a few works in this field ap-

peared in recent years.  

One of the first works was Milanese et al. [20]. The authors investigated the problem 

of designing suitable linear virtual sensors with a focus on the estimation of the relative 

vertical position and velocity between chassis and wheel, using the data from the accel-

erometer placed on the chassis or wheel. For the task, the Direct Virtual Sensor design 

technique has been proposed. In 2014, Pletschen and Badur [21] presented a new nonlin-

ear suspension state estimation approach based on Kalman Filter theory and Takagi-

Sugeno modelling. Wang et al. [22] proposed the Adaptive Kalman Filter for the purpose 

to obtain accurate state estimation of a vehicle's suspension system under different road 

conditions. Jeong et al. [23] proposed a strategy for relative suspension velocity estima-

tion. The method consists of mathematical modelling and direct measurements provided 

by an IMU sensor. Vertical front suspension forces are calculated using governing equa-

tions combined with heave, roll and pitch accelerations measured by the sensor. Out of 

these forces, relative suspension velocity is derived. Vazquez et al. [24] provided suspen-

sion state, road profile and transfer load estimation methodology using deflection sensors, 

accelerometers and gyrometers. The observation scheme used is a linear Kalman filter. 

Despite the approach's simplicity, its robustness against uncertainty is remarkable. 

As it can be seen, the most commonly used techniques for suspension state estimation 

involve Kalman Filter; we propose a new approach in this investigation. The main contri-

bution of this paper investigates the feasibility of a Neural Network (NN) model-based 

virtual sensor for unsprung mass relative velocity estimation. NNs are increasingly used 

for sequence regression tasks, including mechanical state prediction [25], lateral vehicle 

velocity estimation [26,27]). This leads to the assumption that similar methods can be used 

for virtual sensor development to estimate unsprung mass relative velocity. Based on [26], 

the Bidirectional Long-short time memory (BiLSTM) based NN model may provide better 

performance compared to 2 layers of Long-short time memory (LSTM) and 1-dimensional 

convolutional NN (1D CNN). Therefore, BiLSTM was selected for the NN-model of a pro-

posed virtual sensor for unsprung mass relative velocity estimation in the presented re-

search.  

The proposed virtual sensor is designed for real-time application for vehicle un-

sprung mass relative velocity estimation using multiple sensor data of selected sample 

window size. Designed virtual sensors decrease the need for physical sensors on vehicle 

unsprung masses. The output can be used for semi-active/active suspension control. The 

proposed NN model-based virtual sensor was validated and tested on simulated data, 

with error data analysis, including time and frequency domains. In addition, error distri-

bution was analysed using an error histogram. 

The further structure of the paper is as follows. In Section 2, we present (i) a vehicle 

model, (ii) manoeuvres used for dataset creation, and (iii) the BiLSTM-based Deep NN 

model and its optimisation algorithm. Section 3 provides the results of vehicle model val-

idation. Hyperparameter optimisation, BiLSTM-based DNN structure selection is pro-

vided in this section as well. Finally, we analyse virtual sensor validation and testing re-

sults using the Root Mean Squared Error (RMSE) of unsprung mass relative velocity. In 
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Section 4, the discussion is performed, and further steps for system development are pre-

sented.  

2. Materials and Methods 

In this Section, materials and methods used for data acquisition and development, 

validation and testing of the virtual sensor for vehicle relative velocity of unsprung mass 

are described. First, the vehicle mathematical model is presented, including software de-

scriptions and scenarios. Second, NN-model used for the virtual sensor is described, in-

cluding model structure and hyperparameter optimisations method. 

2.1. Virtual Sensor for vehicle unsprung mass relative velocity estimation 

For vehicles equipped with semi-active or active suspensions, the velocities of sprung 

and unsprung masses are required to implement a control strategy. Sprung mass velocity 

can be measured using an IMU sensor placed on the sprung mass. The velocity of un-

sprung mass commonly is evaluated using data from accelerometer and displacement 

sensors. Our approach for VS creation was supervised learning with selected sensors in-

put and recorded relative unsprung mass velocity data (Figure 1).  

The vehicle model of Sport Utility Vehicle (SUV) was built in the IPG CarMaker sim-

ulation platform. The model has been parametrised and validated using field tests data 

from the proving ground; vehicle parameters are presented in Table 1. It is a modified 

electric Range Rover Evoque vehicle with on-board electric motors. The tire parametrisa-

tion using experimental data was performed to simulate tire dynamics.  

 

 

Figure 1. SUV dynamic model 
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Table 1. Data used in mathematical model 

Parameter Symbol Value 

Wheelbase L 2.675 m 

Distance between front axle and COG b 1.439 m 

Distance between rear axle and COG a 1.236 m 

Height of COG above ground h 0.65 m 

Vehicle mass m 2442 kg 

Total unsprung mass mu 126.2 kg  

Distance between left track and COG d 0.778 m 

Distance between right track and COG c 0.847 m 

Track width T 1.625 m 

Wheel rotational inertia J 0.9 kg m2 

Tire stiffness  Kt 225368 N/m 

Loaded tire radius Rl 0.343 m 

Tire size  235/55/R19 

Pitch inertia   642.3 kg m2 

Roll inertia   2892 kg m2 

Yaw inertia   3231 kg m2 
 

Simulation data included 14 parameters as inputs: sprung mass accelerations in 3 

directions (x, y, z), angular rates around these three axes, longitudinal vehicle velocity, 

front wheels' steering angle and overall vehicle steering angle from steering system, an-

gular velocities of the wheels. The vertical velocities of four unsprung masses were used 

as an output.  

Test tracks and manoeuvres were selected with consideration of data collection for 

NN training and validation. For training, more dynamic data must be collected; therefore, 

three scenarios were chosen from the standard scenarios in IPG CarMaker (Figure 2).  

DEU Hockenheimring track has an overall length of 2.6 km. There are some straight 

sections as well as hard cornering. Various speeds up to 120 km/h and driving manners 

were applied to cover most vehicle dynamics. Secondly, a rural road roundabouts sce-

nario was selected. This scenario contains braking and acceleration manoeuvres. Also, 

lane changes and driving around the constant radius turns. The overall length driven by 

the vehicle on this track is 1.76 km, with the maximum speed was 75 km/h. 

Furthermore, road DEU Heilbronn was used. This curvy road contains inclinations 

and declinations. Additional user-defined stopping sections were used to induce acceler-

ation and deceleration manoeuvres. The overall track length covered was 5.79 km with an 

average speed of 55 km/h. The driver model was modified to three different parameter 

sets featuring defensive, normal, and aggressive driving styles in all mentioned test sce-

narios. Different longitudinal, lateral acceleration levels and varying cruising speeds de-

fine each driving style. 
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a) b) c) 

Figure 2. Selected tracks a) Hockenheimring; b) Rural roundabouts road; c) Heilbronn 

Data from Heilbronn and rural road tracks were used for training and Hocken-

heimring for validation. Additionally, constant radius cornering (ISO 4138:2012, obstacle 

avoidance, Sine with Dwell (ISO 19365:2016), bumpy road and slalom manoeuvres were 

simulated for NN dataset creation (see Table 3), and the data was used for NN testing.  

 

2.2. BiLSTM-based Deep Neural Network model 

To take advantage of sensor data being sequential, bidirectional long-short term 

memory (BiLSTM)-based recurrent network was used. This type of neural network (NN) 

is attributed to recurrent neural networks (RNN) and can learn sequential data models 

and base prediction on past and current signal values. Model structure, hyperparameter 

selection experiment and results of validation and testing are presented in this section. 

The structure of the selected RNN includes six layers, see Figure 3.  

 

Fig 3. Structure of BiLSTM-based RNN, its inputs and outputs. 

NN model layers include sequence input layer, BiLSTM layer, one hidden FC layer, 

Dropout layer, one output FC layer and regression output. The sequential input layer lets 

in data from all input channels as a sample sequence of length defined by the window size 

parameter. BiLSTM layer includes extended LSTM units that propagate signals forward 

and backwards. That may improve model performance. Hidden FC layer and output FC 

layers process features extracted in the BiLSTM layer. Units count of the Output FC layer 

is equal to the outputs count of the virtual sensor. The dropout layer is between the hidden 

FC and the output FC layer. It reduces NN dependence on single features from BiLSTM, 

as dropout rate of 0.5 is based.  
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The input of the network is sequential samples of all inputs M for window size W. 

The input data samples are fed to the network sequentially, and only the output of 

BiLSTM for the last input sequence sample is forwarded to the next layer. Therefore, cal-

culation duration in the BiLSTM layer depends linearly on window size W. As each 

BiLSTM unit does the same calculations, matrix and vector calculation is used. As a result, 

calculation speed depends less on the overall unit count in NN layers such as BiLSMT and 

FC. All operations can be done in one cycle of the parallel processing unit and especially 

graphical processing units (GPU). This network model used in the real-time situation 

would require holding input data samples that cover selected window size W. The model 

unit counts are limited to 512 and window size to 51. Therefore, model implementation 

on low-power devices and automotive on-board computers is feasible. 

Even a tiny artificial NN has at least some hyperparameters. They are defined before 

training and are not optimised during the training process. However, hyperparameters 

have a significant impact on NN performance and need careful selection or optimisation. 

As hyperparameters are changed before training, NN training and validation operations 

are performed for each combination. Therefore, training itself is a long operation, and se-

lecting hyperparameter is times longer. In order to formalise the process of hyperparam-

eter selection, unique optimisation methods are used. 

There are three main methods for hyperparameter optimisation: grid search, random 

search, and Bayesian search. Grid search is the simplest but most computationally expen-

sive. It involves iterating through the defined multi-dimensional grid of hyperparameters 

combinations. If the step size in this grid is small, iterations count can become huge, and 

this type of optimisation may take a very long time and many computation resources. It 

is possible that the grid is too sparse and will not provide the best possible solution. Also, 

significant time will be spent on unpromising combinations. Random search has no de-

fined grid, and parameter combinations are generated randomly; the random process may 

be faster compared to grid search if the probability distribution is uniform. Random 

search has shown that it can find good combinations faster compared to grid search. 

Bayesian optimisation is similar to random search. Instead of randomly selecting pairs, it 

analyses previous combinations results, builds the Gaussian probability model, and 

makes a new combination selection to improve the model (see Figure 4). It saves all com-

binations, always saving the best, also it provides an estimate that may be not tested yet 

but provides even better performance. Hence, time is reduced and avoids the drawbacks 

of grid search. 

3. Results 

3.1. Vehicle Model Validation and Dataset Generation 

The vehicle model has been parametrised and validated on an IPG CarMaker-based 

simulation platform using field tests data from the proving ground [28]. The obstacle 

avoidance manoeuvre is presented in Figure 4 as a validation example, achieved accuracy 

RMSE=0.39 m/s2. The test is performed to determine vehicle nature at a severe lane-change 

manoeuvre. Overall track length is 61 m. All sections should be marked with cones of a 

minimum height of 500 mm. ISO 3888-2:2011 [29] does not specify a minimum or limit 

velocity level, but throttle application must be stopped in 2 m after entering section 1.  
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Figure 4. Obstacle avoidance test (ISO 3888-2:2011): a) manoeuvre scheme; b) sprung mass lateral accelerations during the test. 

After vehicle model validation, the dataset was generated for NN training, validation 

and testing. All the roads and manoeuvres are described in Section 2, as well as input and 

output data. 

3.2. Results of Hyperparameter Optimisation 

During hyperparameter optimisation of the selected NN model, the predefined win-

dow size was used for data samples and selectable unit counts in BiLSTM and FC layers. 

The window sizes of 3, 7, 11, 17, 19, 21, 25, 31 and 51 have been used. The bigger the 

window size, the more features can be extracted from the signals, especially the lower 

frequency and more complex features. On the other hand, a bigger window results in lin-

early increasing computation duration to get the final output of the sequence from the 

model. Therefore, a trade-off between the duration of computation and accuracy should 

be introduced.  

During the Bayesian Search, the unit counts in BiLSTM, and FC layers are being se-

lected from range [1, 512]. The models with each selected combination of unit counts are 

trained and validated on Nvidia Geforce 2080 Ti graphical processing unit (GPU) using 

MATLAB. For each window size, the mini-batch size is selected to fill the GPU memory 

as much as possible, as models are pretty small and in cases of small window size do not 

utilise GPU completely. The total count of training made was around 350. ADAM opti-

miser used for training with 0.001 learning rate and training was limited to 30 epochs.  

RMSE of unsprung mass relative velocity was used as a metric for optimisation. As 

two parameters were optimised and one metric was used, a 3D mesh can be drawn to 

show the optimisation process. In Figure 5, hyperparameter optimisation mesh for a win-

dow size of 21 is shown. 

Training and validation error graphs showed that RMSE reduces mainly in 15 epochs 

and not much after 25 epochs. There were no overfitting detected in graphs of the training 

process. The hyperparameter optimisation process that was wrapping the training would 

reject overfitting networks based on validation RMSE after each training. 

In Figure 5, it can be observed that blue dots correspond to tested combinations, black 

for following possible combination, red star shows feasible model minimum point, and 
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red mesh shows model mean. Under that mesh, there is a 2D graph with isolines of vari-

ous colours. Blue points represent low values, and yellow ones correspond to high values 

of the estimated objective, RMSE. This model helps the search algorithm to select the fol-

lowing points in hyperparameter space.  However, the 2D graph of observed and esti-

mated objective function value on the y axis and trial number on the x-axis is provided. 

 

Figure 5. Bayesian search for NN model using sample window of 21. 

After a Bayesian search for 30-60 iterations for each window size, only the best net-

work models were selected for each sample window size. The best models are presented 

with their hyperparameters, RMSE and relative calculation duration in Table 2. The cal-

culation duration is based on sequential calculation (minibatch size of 1) of all validation 

samples, which are 19,800 minus (window size – 1). As duration depends on processor 

speed, only relative calculation time is presented compared to the smallest sample win-

dow as a baseline, which is about 36 seconds for all samples. The calculation time meas-

urement has been performed three times because of temporal dependencies on hardware 

performance. 

Table 2. Hyperparameter optimisation results with relative performance and calculation duration comparison. 

Window 

size 

Selected parameters RMSE Relative 

Error, % 

Relative calcula-

tion duration, % BiLSTM units  FC units 

3 360 403 0.0171 100.0 100.0 (37.4 s) 

7 502 295 0.0127 74.3 103.5 (38.7 s) 

11 202 312 0.0115 67.3 114.2 (42.7 s) 

17 512 111 0.0091 53.2 127.8 (47.8 s) 

19 167 256 0.0081 47.4 130.5 (48.8 s) 

21 137 298 0.0082 48.0 131.6 (49.2 s) 

25 207 511 0.0090 52.6 139.4 (52.1 s) 

31 116 345 0.0096 56.1 152.1 (56.9 s) 

51 137 298 0.0100 58.5 189.3 (70.8 s) 
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The results show that RMSE reduces when window sizes from 3 to 19 are used. 

Therefore, accuracy is being improved, and relative calculation time increases with sam-

ple window size growth. The graphs of relative performance and calculation duration are 

shown in Figure 6. This graph demonstrates that the size of the window of 19 brings the 

best improvement in performance compared to the increase in calculation duration; 

longer sample windows bring diminishing returns.  

 

 
Figure 6. Relative performance and calculation time dependence on sample window size. 

 

In Figure 6, the best RMSE improvement compared to windows size 3 is achieved 

using window size 19. RMSE improvement in percent and calculation duration delta 

shows that the most significant positive delta is achieved at a window size of 7 and 19. 

After evaluating these graphs, the conclusion can be made that the best sample window 

size is 19. Also, it brings the best compromise between accuracy and computation dura-

tion. Therefore, validation and testing results are provided for the window size 19 in the 

next section. 

3.3. Virtual sensor validation and testing 

In this section, we provide and analyse virtual sensor outputs on validation and test-

ing data in comparison to reference data, which is unsprung mass relative velocities pro-

vided as part of simulated vehicle parameters. The developed virtual sensor estimates 

unsprung mass relative velocity in the vertical direction. The time series and frequency 

diagrams of the original and predicted vertical velocity of the unsprung mass is presented 

in Figure 7.  

The time-domain graphs of original simulation output and NN model output for one 

wheel are provided for validation simulation of Hockenheimring with the normal driving 

scenario in Figure 7.a.  

In order to better present an actual difference between actual and estimated velocity, 

the corresponding absolute error is shown in Figure 7.b. The max. absolute error is about 

0.11 m/s while RMSE is 0.0081. The spikes in absolute error correspond with higher fre-

quency changes in unsprung mass relative velocity and acceleration.  

Frequency analysis has been performed to understand how the difference is spread 

over the spectrum of measurable frequencies. The spectrum relative error was calculated 

as the delta between predicted and reference signal spectrums divided by the spectrum 

of the reference signal. The results are shown in Figure 7.c. Measurements are made at 100 

samples per second; we provide graphs from 0 to 15 Hz based on primary and secondary 

ride quality assessment. The observed relative error is mostly between 0 and 10 Hz. The 

max. relative error is concentrated around 3 Hz. Additionally, in Figure 8, the error histo-

gram shows how predicted signal error values are distributed. 
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Figure 7. Comparison of predicted and reference signal: a) Time-domain graph of reference and predicted signal; b)  

b) Time-domain graphs of absolute error of predicted signal compared to reference; c) Relative error of frequency 

spectrum of a predicted signal. 

 

In addition to Figure 7.b, Figure 8 shows that most errors are between -0.01384 and 

0.01402 m/s. A small disbalance around zero is related to the asymmetric bin ranges, con-

sidering that the form of distribution meets Gaussian distribution. 

 

  
 Figure 8. Error histogram for unsprung mass relative velocity prediction compared to the reference. 
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Complete testing procedure involved 3 validation and 20 testing simulations, and 

RMSE results calculated for each wheel (unsprung mass) relative velocity prediction sep-

arately and overall RMSE of simulation. The results are shown in Table 3. Furthermore, 

the training RMSE was included to validate the training correctness, as RMSE on the train-

ing set should be smaller than on the validation and testing sets. In the data we see, there 

is not much noise in higher frequency (Figure 7 c). Therefore, the assumption is that aug-

menting input sensor data with simulated sensor and process noise may improve gener-

alisation. 

Table 3. RMSE achieved in various training, validation and testing scenarios for each wheel and overall. 

Scenario 
RMSE 

FL FR RL RR Overall 

Heilbronn track, Aggressive driver (training) 0.0034 0.0033 0.0035 0.0034 0.0034 

Heilbronn track, Offensive driver (training) 0.0021 0.0020 0.0021 0.0020 0.0021 

Heilbronn track, Normal driver (training) 0.0027 0.0026 0.0027 0.0026 0.0027 

Rural track, Aggressive driver (training) 0.0068 0.0069 0.0072 0.0071 0.0070 

Rural track, Offensive driver (training) 0.0027 0.0028 0.0028 0.0029 0.0028 

Rural track, Normal driver (training) 0.0045 0.0046 0.0042 0.0044 0.0044 

Hockenheimring track, Aggressive driver (validation) 0.0167 0.0180 0.0157 0.0158 0.0166 

Hockenheimring track, Offensive driver (validation) 0.0053 0.0054 0.0046 0.0050 0.0051 

Hockenheimring track, Normal driver (validation) 0.0086 0.0091 0.0070 0.0078 0.0081 

Constant turn with radius of 100 m at 100 km/h (testing) 0.0393 0.0296 0.0500 0.0500 0.0431 

Constant turn with radius of 100 m at 50 km/h (testing) 0.0013 0.0013 0.0013 0.0013 0.0013 

Constant turn with radius of 100 m at 75 km/h (testing) 0.0025 0.0036 0.0044 0.0041 0.0037 

Constant turn with radius of 30 m at 30 km/h (testing) 0.0008 0.0011 0.0011 0.0011 0.0010 

Constant turn with radius of 30 m at 50 km/h (testing) 0.0148 0.0125 0.0189 0.0203 0.0169 

Constant turn with radius of 60 m at 50 km/h (testing) 0.0008 0.0010 0.0012 0.0012 0.0011 

Constant turn with radius of 60 m at 75 km/h (testing) 0.0313 0.0252 0.0397 0.0411 0.0349 

Double lane change (ISO-3888-2) at 30 kmh (testing) 0.0014 0.0013 0.0017 0.0014 0.0015 

Sine with Dwell 60 deg at 40 km/h (testing) 0.0029 0.0020 0.0031 0.0022 0.0026 

Sine with Dwell 60 deg at 60 km/h (testing) 0.0101 0.0061 0.0108 0.0067 0.0087 

Sine with Dwell 60 deg at 80 km/h (testing) 0.0189 0.0133 0.0203 0.0138 0.0169 

Sine with Dwell 80 deg at 40 km/h (testing) 0.0037 0.0028 0.0043 0.0025 0.0034 

Sine with Dwell 80 deg at 60 km/h (testing) 0.0130 0.0081 0.0145 0.0081 0.0113 

Sine with Dwell 60 deg at 80 km/h (testing) 0.0284 0.0226 0.0312 0.0231 0.0266 

Bumpy road at 15 km/h (testing) 0.0154 0.0164 0.0209 0.0146 0.0170 

Bumpy road at 25 km/h (testing) 0.0223 0.0236 0.0298 0.0209 0.0223 

Bumpy road at 32 km/h (testing) 0.0347 0.0359 0.0472 0.0390 0.0395 

Slalom 18 m at 15 km/h (testing) 0.0013 0.0014 0.0016 0.0013 0.0014 

Slalom 18 m at 25 km/h (testing) 0.0012 0.0013 0.0013 0.0012 0.0012 

Slalom 18 m at 35 km/h (testing) 0.0025 0.0017 0.0024 0.0019 0.0021 

 

Based on Table 3, first, aggressive driving increases RMSE, which may be related to 

higher acceleration and jerk in vehicle motion, as unsprung mass movement depends on 

road profile and drivers behaviour. Second, higher vehicle speeds increase the RMSE of 

prediction, as higher speed means higher frequencies, which can be explained by the fact 

that higher speed increased the frequency of change in unsprung mass relative velocity. 

Higher frequency signals caused by abrupt manoeuvres may include signal frequencies 

that are beyond Nyquist frequency for 100 Hz sampling rate that may lead to aliasing in 

the spectrum.  
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4. Discussion 

This research aimed to develop a virtual sensor for unsprung mass relative velocity 

prediction based on other vehicle movement characterising sensor data, including IMU 

and steering related sensors. The hypothesis was that this problem could be solved as a 

sequential signal regression task. Literature review showed that state-of-art multi-input 

sequence regression could be implemented using recursive NN, and BiLSTM based mod-

els are currently achieving impressive results. 

In order to implement an NN-based virtual sensor, training, validation and testing 

datasets are needed. These datasets were acquired from simulations using IPG Carmaker 

based on the experimentally validated vehicle model. The simulations covered two tracks 

and three various driving styles for training, one track and three different artificial driving 

styles for validation, and five manoeuvres for testing with various parameters and road 

profiles. 

The NN structure has been selected for multi-input sequential regression. The hy-

perparameter optimisation using Bayesian search was made to select the best parameters. 

The experiment was done to evaluate the developed models' performance as main metrics 

RMSE and relative calculation time were selected. Based on the simulations, the NN 

model with a window size of 19 provides the best performance improvement compared 

to the computation duration increase. 

During the simulation studies, virtual sensor output signals were compared to the 

reference and analysed in the time and frequency domain. The best NN model demon-

strates that the predicted signal is close to reference with an RMSE of 0.0081 and a maxi-

mum error of 0.11 m/s. Most errors are concentrated between -0.01384 and 0.01402 m/s, 

and the error distribution is Gaussian. Frequency domain analysis shows that most of the 

error is between 0 and 10 Hz, with peak values at 3 Hz. 

Analysing the achieved results, it can be concluded that virtual sensors using an NN 

model such as BiLSTM is a viable option for unsprung mass relative velocity prediction. 

The final NN consists of 167 BiLSTM, 256 hidden FC units and four output FC units. This 

virtual sensor running on Nvidia Geforce 2080 Ti GPU, even sequentially (with a mini-

batch size of 1), can process inputs at 500 Hz frequency, and where the limitation is data 

bus latency. In future, the proposed virtual sensor will be assessed on dSPACE real-time 

target machine, and later on embedded systems that are closer in performance to modern 

vehicles microcontrollers.  
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