
 

 
 

Article 

Variability of Gravel Pavement Roughness: Analysis of the Im-
pact on Vehicle Response and Driving Comfort 
Vidas Žuraulis 1, Henrikas Sivilevičius 1, Eldar Šabanovič 1, Valentin Ivanov 2,* and Viktor Skrickij 1 

1 Transport and Logistics Competence Centre; Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-
10223 Vilnius, Lithuania; vidas.zuraulis@vilniustech.lt (V.Ž.); henrikas.sivilevicius@vilniustech.lt (H.S); 
elder.sabanovic@vilniustech.lt (E.Š.); viktor.skrickij@vilniustech.lt (V.S.) 

2 Automotive Engineering Group, Technische Universität Ilmenau, Ehrenbergstr. 15, 98693 Ilmenau, Ger-
many; valentin.ivanov@tu-ilmenau.de (V.I.) 

* Correspondence: valentin.ivanov@tu-ilmenau.de; 

Featured Application: The article presents the methodology for adaptation of pavement quality 
indexes for gravel pavement. The findings presented in the article can be used to improve driving 
safety and gravel pavement maintenance. 

Abstract: The gravel road pavement has a lower construction cost but poorer performance than the 
asphalt surface. It also emits dust and deforms under the impact of vehicle loads and ambient air 
factors. The resulting ripples and ruts are constantly deepening, increasing vehicle vibrations and 
fuel consumption, reducing safe driving speed and comfort. In this article, existing pavement qual-
ity evaluation indexes are analysed, and a methodology for their adaptation for roads with gravel 
pavement is proposed. This article reports the measured wave depth and length of the gravel pave-
ment profile by the straightedge method of a 160 m long road section in three road exploitation 
stages. The measured pavement elevation was processed according to ISO 8608, and vehicle fre-
quency response has been investigated using simulations in MATLAB/Simulink. The applied Inter-
national Roughness Index (IRI) analysis showed that a speed of 30-45 km/h instead of 80 km/h pro-
vides the objective results of IRI calculation on the flexible pavement due to a decreasing velocity of 
vehicle's unsprung mass on a more deteriorated road pavement state. The influence of the corruga-
tion phenomenon of gravel pavement has been explored, identifying specific driving safety and 
comfort cases. Finally, an increase in the Dynamic Load Coefficient (DLC) at a low speed of 30 km/h 
on the most deteriorated pavement and a high speed of 90 km/h on the middle-quality pavement 
demonstrates the demand for timely gravel pavement maintenance and the complicated prediction 
of a safe driving speed for drivers. 

Keywords: gravel pavement; roughness; straightedge; power spectral density; international rough-
ness index; vehicle response; driving comfort 
 

1. Introduction 
The pavements of road and urban street are mostly made of concrete, asphalt, cob-

blestone and gravel. The share of gravel pavements, particularly on local and regional 
roads of low and middle-income countries, remains relatively significant. Decreased han-
dling, comfort, impact on roadside areas and other destructive indicators from this point 
of view make the global sustainable transportation hardly achievable [1]. The costs of 
gravel pavement construction are the lowest; however, its strength, environmental impact 
and driving conditions are the worst [2,3,4]. Such pavement must be maintained continu-
ously by reducing the transverse ripples' resulting height and employing the blading tech-
nique. The gravel pavement also needs to fill with additional bulk material periodically 
due to the deterioration process. Rough gravel pavement increases fuel consumption and 
gas emissions [5], which is incompatible with people's mobility and life quality needs and 
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environmental principles. It is estimated that taking a temporal reference of 25 years, pav-
ing 1 km of gravel roads results in 230,000 litres of fuel saved and 580 tons of CO2 emis-
sions avoided [6]. Moreover, many road accidents occur on gravel roads with relatively 
high traffic volume [7]. Finally, safety, stability and comfort systems including suspension 
development must also be adapted to operate efficiently under an imperfect pavement 
having different roughness levels [8,9,10,11,12,13,14]. 

Currently, there are no straightforward methodologies to determine the gravel road 
surface condition according to the driver's need to travel safely and comfortably. The ex-
isting research of vehicle response analysis, safety, durability, and fatigue loads are mostly 
related with paved roads [15,16,17,18]. Different indexes are used for road pavement qual-
ity evaluation; however, they are mainly used for asphalt or concrete. One of the ap-
proaches of this research is to analyse existing indexes and develop a methodology for 
their adaptation for roads with gravel pavement. Instead of developing an original index, 
a modification of a widely used one is proposed, thus increasing the possibility of its fur-
ther usage by operators ensuring road quality and other researchers. 

The goal is to develop the methodology for gravel road quality evaluation concerning 
pavement deterioration and vehicle dynamics response, providing appropriate mainte-
nance indication for this pavement type. 

The paper has five sections, including an introduction. In Section 2, related works 
about the road roughness are analysed, the specificity of the gravel pavement is provided. 
Such road impact on vehicle dynamics considering comfort and handling, vehicle compo-
nents degradation is taken into account. Road roughness measurement techniques and 
indexes used for quality evaluation are reviewed; the methodological gaps are identified. 
In Section 3, the research strategy is provided. Also, the theoretical background for the 
selected index calculation is presented. In Section 4, the experimental procedure is de-
scribed. In Section 5, the specificity of the International Roughness Index (IRI) approach 
for the gravel pavement is analysed, and vehicle dynamics response in the context of the 
excitation of sensitive frequencies at different driving speeds on the gravel pavement is 
examined. The conclusions summarise the main results and explain how IRI can be used 
for quality evaluation of gravel pavements and define future research guidelines. 

2. Related works 
Three classes of the grouped road pavement roughness parameters, including geo-

metric road parameters, statistical values, and performance-based indicators, are usually 
used in literature [19]. Statistical parameters of geometric characteristics are directly re-
lated to the pavement texture profile's geometry, which is described in international 
standard ISO 13473-2 [20]. The performance indicators describe tyre – surface interaction, 
and this area are related to a broad scope of vehicle dynamics aspects. 

Rapid changes in the surface characteristics are one of the gravel pavement's specific 
properties. The deterioration of gravel pavement is affected by climatic and meteorologi-
cal factors such as wind, water, and temperature fluctuations. These factors alone or in 
combination with vehicle loads break down the gravel pavement even faster. Thus, a five-
level rating system has been introduced to evaluate the pavement surface of gravel roads 
[21], it includes: i) crown (shaping and grading quality); ii) drainage (roadside ditches and 
culverts); iii) gravel layer (thickness, gradation, particles shape and regularity, gravel du-
rability); iv) surface deformation (corrugation, potholes, ruts); v) surface defects (dust, 
loose of aggregate particles).  The deteriorated pavement having the specific waves of a 
narrow band spectrum is partly similar to the rigid pavement containing a high number 
of cosine shape obstacles. In such a case, the road profile is considered as quasi-homoge-
neous, i.e. standard profile processing is not directly applicable [22]. 

The corrugation or 'washboard' phenomenon for gravel pavement occurs in small 
transverse ripples. The vehicle wheel's periodical vertical motion caused by suspension 
characteristics and body bounce affects harmonic loads and ripples' formation. Very small 
and initially insignificant imperfections primarily cause the corrugation on the unpaved 
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road, such as little undulation, the variance of surface flexibility or even sporadic grains 
[23,24]. Following a study on the factors causing gravel road corrugation, regression anal-
ysis enabled the researchers to define the extent of corrugation [25]. The surface defor-
mation, especially corrugation, is usual for dirty roads under dry weather conditions; 
however, ripples also occur on the paved surfaces where traffic does intensive braking or 
acceleration. This is typical for vertical road curves near intersections. 

The decomposition processes and overall quality deterioration of gravel pavement 
are more difficult to characterise than those observed in asphalt, concrete, or cobbles road 
pavements. During dry climatic periods, due to the interaction of wheels with the road 
surface, the pavement wear rises its dustiness, thus negatively impacting the comfort and 
health of the inhabitants accessing and using this particular type of road [26,27]. On the 
contrary, rainwater washes away the materials used for reducing dustiness. Also, rainwa-
ter washes away fine particles from the pavement surface, weakens the bedrock and re-
sults in an increased number of defects and deeper tracks on gravel pavements [28]. 

Defects of the gravel pavement causes the decrease of driving speed, comfort and 
friction [29,30], intensify vehicle chassis damage [31]. Wavelength and the spatial fre-
quency of road pavement characterise irregularities and a texture effect on vehicle re-
sponse. Vehicle components wear, rolling resistance and discomfort properties are sensi-
tive to longer wavelengths (unevenness and partly mega-texture), while friction between 
the tyre and the road interacts at mega, macro and micro-texture levels. Moreover, two 
types of pavement profile waves are specified at the size of the tyre-asphalt contact area: 
short waves are 3–6 mm in length, and long waves are 20–30 mm [32]. This particular 
research demonstrates that the 1 mm maximum height of micro-irregularities has been 
found until adhesion tends to increase; however, this regularity is not applicable for rough 
surfaces. 

Different maintenance procedures, including mainly light or hard blading, sand 
cushioning, reshaping, re-gravelling, etc., are applied for the gravel pavement [33]. Bitu-
men emulsion spraying is used as an effective method for decreasing dustiness [34]. 
Jurkevičius et al. [35] defined the road maintenance management system based on the 
prediction of pavement performance and deterioration models. The model applied for 
gravel pavements calculates the gravel loss of thickness [36]. It enables to plan gravel lay-
er's thickness for road rehabilitation or a new road. Data on traffic, climate and roughness 
variation, material quality, gradeability and cost should be collected to select an optimal 
road maintenance strategy. 

Pavement quality evaluation, including roughness measurements, should be made 
to plan the road pavement maintenance. Various methods and devices are used for eval-
uating the roughness and deterioration level of the road pavement [37,38]. For profiling, 
various devices as a straightedge, a dipstick, the Merlin machine and an inertial profiler 
are commonly used [39,40]. Response based devices (displacement or acceleration sen-
sors, equipped trailers or vehicles) are widely applied due to fast processing and low-cost 
equipment available [41,42,43,44,45,46,47]. Monitoring the state and quality of the un-
paved roads can be based on visual observations and in-person surveying, contrary to 
paved road evaluation when data are collected automatically [48]. The digital image ac-
quisition system was applied to utilise the unmanned aerial vehicle (UAV); however, lim-
ited pavement distresses were captured (mainly potholes and rutting). The flight range of 
the UAV makes it widely not-applicable. Ride quality assessment of vehicle response is 
convenient enough, though the most characteristic driving speed is not the same for dif-
ferent quality pavements. Other various identification principles are also known from the 
literature, for example, a mechanical profilometer for three-dimensional terrain models 
[49], smartphone accelerometer processing [50], or image analysis [51], reconstruction 
methods using additional sensors [52,53]. 

Various ride quality assessment indicators are defined to describe the impact of road 
roughness. In the last 15 years, several new indexes were introduced [54]. Loprencipe and 
Zoccali [55] compared the relation between Ride Number (RN), Michigan Ride Quality 
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Index (RQIMich), Minnesota Ride Quality Index (RQIMn) and frequency-weighted verti-
cal acceleration (𝑎௪௭) and their relationship with the most-used IRI. The RN, RQIMich and 
RQIMn have been developed considering road customer opinions, and their thresholds 
of ride quality level are not speed-related. Therefore, the weighted acceleration 𝑎௪௭  pro-
vided by ISO 2631 [56] is applicable for lower speed roads (not exceeding 50 km/h). Gur-
mail and Kiss [57] analysed the response of towed vehicle construction employing the 
Power Spectral Density (PSD) function to determine the effect of vehicle wheel-ground 
interaction on structural deterioration. Different types of roads having high and low-qual-
ity surfaces were selected before simulation analysis. The same frequency ranges with the 
elevated local maximum of the PSD characteristic increasing speed from 3.6 to 18 km/h 
were determined for a rough gravel road. The conducted research also states that under 
low speed towed vehicle conditions (up to 20 km/h), micro-obstacles (humps and holes) 
occur with shorter than 2.4 m of wavelength or greater than 0.4–1 m wave numbers on 
agricultural roads. A smooth exponential increase in root means square (RMS) values of 
the measured accelerations in the speed range from 3.6 to 25 km/h was determined. Lower 
surface quality roads having the irregular forms of roughness are not suitable for the con-
ventional IRI based-description, despite its broad applicability and simple enough com-
putational implementation [58]. Different values of other indicators (for passengers in par-
ticular) were determined for the roads with the same IRI values; therefore, alternative 
roughness or vehicle/passenger response indicators (as RMS of accelerations) can be used 
for specific pavements. Some significant aspects of comfort evaluation in the cabins of 
different bus topologies were also highlighted in the content of IRI limitation [59]. First, it 
was argued that the case of close IRI values was possible for three different road profiles 
and that passengers would experience different vibration conditions. Then, insufficient 
sensitivity to lateral motions (acceleration) based on experimental data was proved. Due 
to the limited IRI evaluation of the specific or unpaved road surface, dynamic response-
based devices or road profile scanners were being used [45]. On-vehicle added devices 
show a high enough correlation with the IRI and allow real-time measurement. 

Road infrastructure in different regions is developed unevenly as there are a large 
number of gravel coatings in suburban and rural areas. The majority of research works of 
vehicle-road interaction focus on asphalt pavement; however, gravel roads condition 
evaluation is commonly performed using methodologies developed several decades ago, 
so new solutions are needed. 

 

3. Indexes for Gravel Road Quality Assessment 
The fundamental concept of road surface profiles at different mechanical vibration 

levels is described in international standard ISO 8608 [60]. The PSD of vertical road profile 
displacement 𝐺ௗ(𝑛) or its rate of change by velocity 𝐺௩(𝑛) or acceleration 𝐺௔(𝑛) con-
forming to spatial frequency (𝑛) are used for defining the degree of roughness: 

𝐺ௗ(𝑛) = 𝐺ௗ(𝑛଴) ቀ
௡

௡బ
ቁ

ି௪

, (1)

𝐺௩(𝑛) = (2𝜋𝑛)ଶ ∙ 𝐺ௗ(𝑛), (2)

𝐺௔(𝑛) = (2𝜋𝑛)ସ ∙ 𝐺ௗ(𝑛), (3)

where 𝑛 – spatial frequency (cycles/m), 𝑛଴ – reference spatial frequency (0.1 cycles/m), 
𝑤 – pavement waviness indicator, or the exponent of the fitted PSD. For general use, the 
road roughness indicator usually takes the values of 1.75 < 𝑤 < 2.25 [61] and for ISO clas-
sification assuming constant velocity PSD, 𝑤 = 2. 

 The gravel pavement profile cannot be approximated with the waviness of w = 2 
used in ISO 8608, which usually occurs on paved roads [46]. Múčka [62] reviewed that up 
to 40% of roads had differences in wavebands, and 20% of sections had short wave une-
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venness (𝑤 > 2).  Another type of specific road usually used for evaluating vehicle dy-
namics is known as Belgian paving also has few brakes in its displacement spectral density 
characteristic [63]. There the wavenumber of 6 cycles/meter corresponds with the size of 
cobbles forming the pavement [64]. 

Generally, PSD expresses power in a signal per unit frequency [65]. The PSD of road 
profile displacement is also expressed by unevenness index 𝐶 [66]: 

𝐺ௗ(𝑛) = 𝐶 ∙ 𝑛ି௪. (4)

 
Wavelength λ (m) has an inverse value of spatial frequency. In the time domain, fre-

quency is expressed as the ratio between wavelength and vehicle speed 𝑣 (m/s), which 
generally satisfies conditions for light vehicles [67,68]: 

0.5 Hz <  
𝑣

𝜆
< 15 Hz (5)

In the context of vehicle dynamics and vibration response analysis, it is more con-
venient to convert excitation from road pavement spatial frequency 𝑛 (cycles per meter) 
to temporal frequency 𝑓 (cycles per second or Hz). In this case, the supposed vehicle 
speed is involved [69]: 

𝑓 = 𝑛 ∙ 𝑣. (6)

Then, the PSD of the road pavement, in consonance to temporal frequency 𝐺ௗ(𝑓), is 
adapted to vehicle speed: 

𝐺ௗ(𝑓) =
ீ೏(௡)

௩
. (7)

The IRI is the most frequently used single-number indicator usually implemented in 
road maintenance management plans, ride comfort or stability assessment. The IRI value 
is estimated from the reference quarter car model, also known as the Golden car model 
[39], driving at 80 km/h and using two components as the velocity of suspension displace-
ment [70,71]: 

IRI =
ଵ

௅
∫ |𝑧̇௦௠ − 𝑧̇௨௦௠|𝑑𝑡

௅/௩

଴
, (8)

where: 𝐿 – the length of the evaluated road profile (m), 𝑣 – longitudinal vehicle speed 
applied for the quarter car model (m/s), 𝑧̇௦௠– the velocity of sprung mass (SM) vertical 
displacement (m/s), 𝑧̇௨௦௠– the velocity of unsprung mass (USM) vertical displacement 
(m/s), 𝑑𝑡 – time increment (s). 

The Dynamic Load Coefficient (DLC) is used for evaluating vehicle response to ride 
safety and driving stability and it shows variations in the vertical tyre force comparing 
with its static force [72,73]: 

DLC =
ୖ୑ୗಷ೥,ౚ౯౤

ி౩౪౗౪
, (9)

where: 𝐹ୱ୲ୟ୲ – static force; RMSி௭,ୢ୷୬ – the root mean square of the dynamic vertical tyre 
force (𝐹௭,ୢ୷୬) determined applying vehicle model simulation or using the formula: 

𝐹௭,ୢ୷୬ = 𝑘௧(𝑧௨௦௠ − ℎ), (10)

where: 𝑘௧ – tyre radial stiffness (taken from the Golden car model), 𝑧௨௦௠ – vertical dis-
placement of USM, ℎ – the vertical roughness of the road pavement. 

The DLC value usually ranges from 0.05 to 0.3, ride safety is high when DLC < 0.1. In 
contrast, the value above 0.15 is related to shaking wheel interaction with the rough pave-
ment and an increase in contact loss [74]. 

 

4. Roughness Measurement Using Straightedge 
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The straightedge method from pavement rut depth measurement [75] was selected 
to collect data collection from the real gravel pavement. The proposed static method is 
based on measuring the gap between the road surface and the constant length (3.0 m) 
beam placed along with the track corresponding to the vehicle's left-side wheels. In this 
research, the straightedge method for measuring the gravel pavement's longitudinal 
roughness was adopted, which is usually characterised by larger roughness. Therefore, a 
small correction in measurement was made by adding 20 mm height spacers (ℎୱ୮ୟୡୣ୰) at 
the ends of the beam (Fig. 1). An additional spacer was used in the cases when the end of 
the beam was over pavement dent. 

 

  

(a) (b) 

Figure 1. The measurement of gravel road roughness applying a straightedge: (a) measurement scheme 1 – straightedge 
of 3 meters in length; 2 – added spacer; 3 – pavement elevation; 4 – pavement dent; (b) measurement of gravel pave-

ment. 

The actual height of elevation and dent is determined by subtracting added spacer 
height (20 mm) considering each measured vertical distance, which is the clearance be-
tween the bottom of the straightedge and the pavement surface at corresponding eleva-
tion and dent: 

ℎୣ୪ = ℎ′ୣ୪ − 20, (11)

ℎୢୣ୬୲ = ℎ′ୢୣ୬୲ − 20, (12)

where: ℎ′ୣ୪, ℎ′ୢୣ୬୲ – the measured height of elevation and dent respectively (mm), 
ℎୣ୪ – the actual height of elevation or clearance between the bottom of the straightedge 
and the pavement at corresponding elevation (mm), ℎୢୣ୬୲ – the actual depth of dent or 
clearance between the bottom of the straightedge and the pavement at corresponding dent 
(mm). 

The first stage of data post-processing included the inversion of data on the measured 
pavement elevation. Thus, the negative values of pavement dent were obtained. The ab-
solute depth (amplitude) of the first wave ∆ఒభ

 (Fig. 1), meaning the difference between 
dent depth and the average of neighbouring elevations, is expressed by the formula: 

∆ఒభ
= ℎୢୣ୬୲,ଵ −

௛౛ౢ,బା௛౛ౢ,భ

ଶ
. (13)

The absolute depth (amplitude) of the second and next waves: 

∆ఒమ
= ℎୢୣ୬୲,ଶ −

௛౛ౢ,భା௛౛ౢ,మ

ଶ
, 

⋮ 

∆ఒಿ
= ℎୢୣ୬୲,ே −

௛౛ౢ,ಿషభା௛౛ౢ,ಿ

ଶ
. 

(14)

A straight section of 160 meters long rural road with gravel pavement was selected 
for this research. Pavement roughness was measured considering the different state of the 
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pavement. The first state (Pavement State 1, PS-1) means that the gravel pavement meas-
urement was carried out following two days after pavement maintenance by blading 
without adding gravel material to the existing road surface. This state corresponds to the 
best-expected quality and driving conditions. The second state (Pavement State 2, PS-2) is 
described as a middle-quality gravel road following three weeks after pavement mainte-
nance and the start of intensive road deterioration. The third state (Pavement State 3, PS-3) 
corresponds to the worst pavement quality when maintenance is expected. 

After blading, large grains were observed on gravel's flat surface; however, it does 
not have a significant influence on vehicle response because of tyre enveloping properties. 
The formed ripples are noticeable on the surface before the maintenance (worst condi-
tion), and almost no individual free grains are found. 

5. Results 
The processed data on the measured profile elevation conforming to the pavement 

state in the road section is shown in Fig. 2. The amplitudes do not exceed the elevation 
value of 20 mm in all pavement states; however, the profiles have noticeable differences 
described further. 

 
Figure 2. Pavement elevation at the same road section in different pavement states (PS) 

The determined surface roughness of the analysed road section is presented in line 
with ISO 8608 methodology in the form of displacement spectral density – spatial fre-
quency (Fig. 3). The pavement roughness description concerning the PSD log-log plot has 
a specific break from a smooth characteristic at spatial frequency 𝑛 = 2 cycles/m (Fig. 3). 
The characteristic of PS-3 has an additional break at around 6.5 cycles/m. These PSD char-
acteristic slope changes show variations in profile waviness at different bands of waves 
(long, medium, or short). The corrugation or 'washboard' phenomenon is recognised at 
the investigated road section. It is the most characteristic for state PS-3, where the shortest 
waves with the smallest variance are established. Furthermore, the maximum number of 
the estimated waves represented PS-3, which confirmed the worst quality. Such smooth 
and constant ripples at certain road sections make driving extremely uncomfortable and 
unsafe at a specific speed, which is also one of the reasons for pavement corrugation. 
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Figure 3. Roughness representation of the measured road section in its different states 

The performed analysis of the wavelengths formed on the gravel pavement allows 
inspecting the reliability of the calculated IRI of the investigated pavement. 

5.1. The IRI approach to the gravel pavement 
Methodically, the velocities of SM and USM in a vertical direction of the Golden car 

model are determined and used for calculating the IRI value (Eq. 8). The second column 
in Table 1 shows the IRI values of the different states of the gravel pavement at a driving 
speed of 80 km/h, as provided in ASTM [65]. Under the deteriorating road pavement con-
dition, IRI values change inconsistently: the highest IRI value (7.28 m/km) was obtained 
under pavement condition PS-2, while the lowest value (5.51 m/km) under pavement con-
dition PS-3. This is not in line with the visually observed (Fig. 2) trends in pavement 
roughness deterioration from PS-1 to PS-3. To analyse the resulting distribution of IRI 
values concerning the pavement condition, the vertical velocities of SM and USM were 
calculated. Table 1 shows the calculated RMS of SM and USM velocities in vertical direc-
tions, where RMS was calculated as follows: 

RMS௭̇೔
= ቂ

ଵ

்
∫ 𝑧̇௜

ଶ  𝑑𝑡
்

଴
ቃ

ଵ/ଶ

, (15)

where: 𝑇 – the duration of the evaluated road profile (s), 𝑖 – indicator for the SM or 
USM depends on the calculated parameter (𝑧̇௦௠ or 𝑧̇௨௦௠). 

The values presented in Table 1 show that the RMS of SM velocity increases along 
with the consistent deterioration of the road pavement condition (from PS-1 to PS-3), but 
the RMS value of USM velocity is unevenly distributed (as to IRI values). SM movement 
is inhibited by suspension elements (mainly dampers). At the same time, the USM inter-
acts with the road pavement through the tyre which stiffness (𝑘௧) is around ten times 
higher than that of suspension (𝑘௦). As a result, the USM moves faster than the SM and 
has a more significant effect on calculating the IRI. These results indicate that the calcu-
lated IRI values are not suitable for analysing the gravel pavements in which the wave-
lengths of the dominant length in the mega-texture area are formed. Similar results of the 
higher sensitivity of wheel holder vibrations to the IRI compared with vehicle frame vi-
brations were captured following the measurements of the reconstructed urban roads 
with cobblestone and asphalt pavements in [76]. 

Table 1. The estimated IRI values of the analysed gravel pavement 
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Pavement State IRI, m/km Velocity RMS, m/s 
SM USM  

PS-1 6.33 0.0283 0.1821 
PS-2 7.28 0.0313 0.2303 
PS-3 5.51 0.0378 0.1530 

 
The IRI value of the road pavement is determined by simulating a quarter car model 

as a vehicle moving at a speed of 80 km/h. Due to comfort and sufficient stability, the 
tested road section of gravel pavement is characterised by lower driving speeds. There-
fore, IRI values were calculated for a wider (30–90 km/h) speed range (Fig. 4a). The re-
ceived IRI values are significantly higher at lower speeds because the same road section 
is covered over a longer time duration, leading to higher accumulated suspension dis-
placement at IRI calculation. In this case, value distribution at a given speed under a cer-
tain road pavement condition rather than the IRI absolute value is analysed. Figure 9a 
shows that, at lower speeds (30 and 40 km/h), IRI values increase along with the road 
pavement deterioration from PS-1 to PS-3. At speed above 45 km/h, the distribution of IRI 
values changes: the values of IRIPS-3 corresponding to the worst road condition become 
lower than the values of IRIPS-2, whereas, at speed above 55 km/h, the value of IRIPS 3 match-
ing to the worst road condition becomes lower than that of IRIPS-1 (under the best-quality 
pavement state). Thus, for calculating the IRI value, a speed of 45–55 km/h meets with the 
transition phase, the IRI value of which is incorrectly consistent with the pavement con-
dition. 

The RMS of the SM and USM velocities was used to analyse IRI values variations 
(Fig. 4b). Fluctuations in RMS values demonstrated that an increase in driving speed re-
sults in minor changes in the SM velocity (continuous lines). However, changes in the 
velocity of the USM were found to be significant (dotted lines). Also, USMPS-3 is on the 
declining trend as speed increases while USMPS-1 and USMPS-2 are on the upward trend. 
These trends in the USM are repeated for IRI values and confirm that a speed of 30–45 
km/h is compatible with the pavement state (PS) of the gravel road (Fig. 4a). 

 

  
(a) (b) 

Figure 4. The analysis of IRI calculation sensitivity in line with calculation-applicable speed: (a) IRI values; (b) RMS val-
ues of SM and USM displacement velocity. 

 

5.2. Vehicle Response to the Pavement State 
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In line with ISO 8608, the presented initial characteristic of the measured road rough-
ness (Fig. 3) shows a clear peak of displacement PSD at a spatial frequency of 2 cycles/m 
for the third pavement state (PS-3). Also, this peak is repeated at six cycles/m of the fre-
quency range. Such unevenness of the characteristic is considerably weakened in the sec-
ond surface state (PS-2) and is completely invisible under the best (PS-1) state. Converting 
road roughness characteristics to temporal frequency (Eq. 6, 7) reveals these characteris-
tics' irregularities at different vehicle driving speeds (Fig. 5). The speeds up to 70 km/h are 
shown, as a higher road speed on the gravel pavement is prohibited under national road 
traffic regulations. The most pronounced fractures in the elevated PSD are observed for 
the third surface state PS 3 (Fig. 5): peak for 10 km/h at 5–6 Hz, a peak for 30 km/h at 15–
18 Hz, a peak for 50 km/h at 23–30 Hz, a peak for 70 km/h at 33–42 Hz. 

 

   
(a) (b) (c) 

Figure 5. Roughness representation in temporal frequency measured at different driving speeds and pavement states: (a) 
PS-1; (b) PS-2; (c) PS-3. 

Driving at lower speeds (10-30 km/h) through short wavelength roughness (PS-3) 
formed on the gravel pavement (macro-texture level) demonstrates that vibration fre-
quency caused by waves approaches the natural frequency of vehicle USM (11–15 Hz). 
This order vibration tends to increase the variability in the normal load of the wheel de-
scribed by the DLC [77,78]. The normal force of the tyre depends on suspension charac-
teristics [79]; however, the road pavement and driving speed has a direct influence. The 
calculated DLC values for the quarter car model working at a wide speed range (10–90 
km/h) are shown in Fig. 6. Here, the Golden car model simulation in MATLAB/Simulink 
environment was used. Conforming to the pavement state, the obtained DLC values have 
the same distribution as the IRI (Table 1) due to the dominant movement of the USM (the 
highest RMS of the USM for PS 2). Both tendencies (IRI and DLC) prove that the second 
pavement state (PS 2) excites resonant motion for the analysed light car model. 

To analyse vehicle response changes in different gravel pavement states, the spectral 
density of pavement displacement at vehicle vertical dynamics sensitive range of 0–20 Hz 
was selected (Fig. 7). The excitation of the road pavement to the vehicle driven at a speed 
of 10 km/h corresponds to an increase in the pavement deterioration level (Fig. 7a). Alt-
hough there is no significant rise in pavement excitation for SM and USM dynamics at 10 
km/h (at 1–2 Hz and 10–14 Hz, respectively), the undesired excitation occurs at the human 
body sensitive frequency range of 4–8 Hz (ISO 2631-1) on PS 3 and PS 2 pavements. As 
the speed of 10 km/h is more typical for special purpose vehicle having different suspen-
sion and tyre properties, this research on light vehicles application is continued analysing 
higher speeds. 
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Figure 6. The estimated DLC at different driving speeds and investigated pavement states 

 

  

(a) (b) 

  
(c) (d) 

Figure 7. Roughness representation in the temporal frequency: (a) 10 km/h; (b) 30 km/h; (c) 50 km/h; (d) 70 km/h 

The characteristic of 30 km/h (Fig. 7b) points out two crucial cases. Excitation at a 
human sensitive frequency range of 2.5–5.5 Hz is higher in the middle-quality pavement 
state (PS-2) and is the lowest in state PS-3. This also shows that a slightly higher driving 
speed (from 10 km/h) makes a milder impact on the human body. The second important 
point in the case of 30 km/h indicates the exclusively high excitation of pavement PS-3 at 
a frequency range of 10–18 Hz. This frequency range covers the resonant frequency of the 
USM and increases variability in the dynamic tyre force, contact loss, and vehicle chassis 
wear. The corresponding peak of the DLC characteristic is marked with the dotted line 
(Fig. 6). The conversion of PS 3 characteristics from the lowest position at 2.5–5.5 Hz to the 
highest at 10–18 Hz (Fig. 7b) shows the possible erroneous driver's sensation about com-
fortable enough driving, but an imperceptible decrease in road holding. 

The characteristics of the speeds of 50 km/h and 70 km/h do not have distinguished 
peaks or rises (Fig. 7c and 7d). However, the above introduced two characteristics have 
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the same feature of higher PS-2 excitation in the middle-frequency range: 4–9 Hz for 50 
km/h and 5.5–12.5 Hz for 70 km/h. The difference between these two cases is that excita-
tion corresponding to 50 km/h affects the human body, while excitation corresponding to 
70 km/h additionally affects USM dynamics (wheel contact). The latter is also recognised 
at the DLC characteristic (marked with the continuous line in Fig. 6). 

Excitation at a low-frequency range of 1–2 Hz sensitive for driving comfort is higher 
on the PS-3 road, but this is reasonable because it is the worst quality pavement. 

In general, all PSD curves of pavement excitation tend to descend with each increase 
(Fig. 7). This may lead to a false perception that a higher speed on the gravel pavement 
gives better driving comfort or safety. The individual analysis of different operating fre-
quencies allowed distinguishing vehicle stability, comfort and human body sense. Lower 
pavement excitation for specific frequencies causes better comfort, but the individual 
cases of a high DLC warn about the potential of vehicle stability loss. 

Natural frequencies utilising the quarter car model's damping ratios (Golden car pa-
rameters [39]) were determined from the Bode plot (Fig. 8a). Natural frequencies were 
placed into the speed-wavelength-frequency characteristic (Fig. 8b), showing sensitive 
frequencies overlapping pavement wavelengths at a specific driving speed. The charac-
teristic shows that SM (vehicle body) vibration is amplified by the pavement with the 
dominant wavelength of 2–30 m at the driving speed in the range of 10–130 km/h, while 
USM vibration (wheels and axles) will be amplified by the wavelengths of 0.25–3.5 m in 
length (Fig. 8b). 

 

  
(a) (b) 

Figure 4. The analysis of IRI calculation sensitivity in line with calculation-applicable speed: (a) IRI values; (b) RMS val-
ues of SM and USM displacement velocity. 

For example, a usual highway asphalt pavement and the unevenness of 10 m wave-
length cause uncomfortable driving at around 30–50 km/h (speed curves cross the solid 
black line in Fig. 8b). However, this speed is not characteristic of highway driving, and 
thus a hardly deteriorated pavement prevents discomfort. Vehicle instability caused by 
wheel resonance under such conditions is barely activated as the natural frequency of the 
USM (wheel hop) does not cross any speed curve at the above mentioned 10 m wave-
length. On the contrary, the second example presents unpaved roads with gravel pave-
ment where short wavelengths dominate. Considering the 1 m wavelength, the natural 
frequency of SM is not reached (solid line in Fig. 8b). However, the USM resonances at a 
speed range of 30–50 km/h (crosses dotted line), thus causing unstable wheel contact with 
the pavement. Shorter wavelengths activate USM resonance at a lower driving speed. Fur-
thermore, the human body sensitive frequency range of 4–8 Hz falls into the short-middle 
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wavelength band (0.3–5 m) for a wide range of speeds. The obtained vibrations corre-
spond to uncomfortable and unstable driving at specific road pavement waviness for a 
certain speed. 

 

  
(a) (b) 

Figure 8. Sensitive vehicle frequencies of pavement wavelengths: (a) – natural frequencies and damping ratios of the 
Bode plot; (b) – wavelength frequency characteristics conforming to driving speed. 

 
In this Section, it was proved that the IRI index could be used to evaluate the gravel 

road pavement condition; however, the significant proposal to calculate the index using 
the specific velocity interval from 30 to 45 km/h for gravel pavement was indicated. PSD 
and DLC indexes with frequency response characteristics provide valuable information 
about the impact of different road roughness levels on discomfort and safety at a certain 
driving speed. 

6. Conclusions 
 
The study aimed to determine changes in the quality of the gravel pavement over-

time during road service life in line with the level of surface roughness and pavement 
excitation on vehicle response and driving comfort. The roughness of the experimental 
160 m long section road with gravel pavement was measured continuously three times by 
adopting the 3 m straightedge method: (1) two days after pavement maintenance (blad-
ing), (2) three weeks after pavement maintenance and (3) assessing the worst pavement 
quality before maintenance. Measurement results showed the continuous deterioration of 
the investigated road quality under an increase in pavement roughness. Pavement eleva-
tion spectral density disclosed several fractures in the roughness log-log plot, which 
means variations in pavement waviness. For the worst road pavement quality (PS-3), the 
dominance of the short waves of approximately 0.5 m in length was found (lowest stand-
ard deviation), which is compatible with the corrugation phenomenon of the transverse 
ripples formed. Furthermore, such a wavy pattern has been found to cause the unsprung 
mass (USM) resonant excitation of the vehicle before the worst road quality is achieved. 

Spatial frequency conversion to temporal was done to analyse vehicle dynamics re-
sponse at different driving speeds. Although the specific fractures of surface power spec-
tral density (PSD) characteristics remained, for the worst quality pavement state, in par-
ticular, speed-affected frequencies have shifted to higher bands. Speed is mostly related 
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to driving safety, and therefore the dynamic load coefficient (DLC), as the indicator of 
tyre-pavement interaction and vehicle stability, was determined considering the analysed 
pavement states. Even quarter car simulations of driving at a low speed (< 30 km/h) 
showed that the DLC reached values higher than 0.15 but did not exceed the value of 0.3 
when the proportion of wheel contact loss grew rapidly. However, the DLC undesirably 
increases at a low speed of 30 km/h on the worst quality pavement and a high speed of 
90 km/h on the middle-quality pavement. Even though most countries have a speed limit 
of 70 km/h on gravel pavements, a potential wheel contact force loss draws attention to 
timely road maintenance. Variations in driving comfort sensation and the indirect predic-
tion of wheel pavement interaction complicate the driver's selection of safe driving speed. 
Therefore, vehicle active chassis systems should be continuously developed for better per-
formance on a specific road as variable roughness gravel pavement. 

In consonance with the estimated vehicle suspension response to the investigated 
type of the gravel pavement, IRI values have been scarcely found to correspond to the 
actual level of pavement roughness. Therefore, this worldwide-spread single-number in-
dicator used for road maintenance planning is not appropriate for the unpaved pavements 
with unsteady waviness. Absolute IRI values do not provide reliable results that can be 
used for safe speed estimation. However, calculating the IRI at a speed range of 30–45 
km/h shows an increase in the values corresponding to the deteriorating pavement state. 
Thus, the IRI values calculated at a low speed (30 km/h) are suitable for assessing the 
gravel pavement condition and road maintenance planning. 

The achieved results can be used by operators ensuring road quality and researchers 
for the decision making about road maintenance, analysing the effect of the unpaved road 
on vehicle driving stability, comfort, active safety systems performance, drivers and road 
maintenance planners and supervisors. 

The future experimental and theoretical research will focus on vehicle dynamic re-
sponse measurements and driver comfort evaluation in different driving modes under 
varying pavement states. Continuous research will also cover higher-order frequency 
bands related to the issues of tyre dynamics and active vehicle safety control over driving 
on unpaved roads. The development of pavement roughness measurement utilising laser 
sensors and artificial intelligence-based image analysis for pavement state identification 
is planned.  The results of direct roughness measurements and their analysis presented 
in this study will also work for validation of further research. 
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